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Abstract— Portfolio Optimization (PO) is a financial engineering 

technique that rebalances resources across multiple risky assets at 

a particular moment to optimize returns and minimize risks. This 

study reveals two methods (static and dynamic) for PO. The static 

method utilized Maximum Sharpe Ratio to determine allocation 

weights that optimize prior profits. The dynamic approach 

employs Deep Reinforcement Learning (DRL) to build a model 

that analyzes stock movement and recommends immediate trading 

actions (buy/sell/hold). The dynamic method utilizes Twin Delayed 

Deep Deterministic Policy Gradient (TD3) because it performs 

well in continuous action spaces without producing excessive 

biases. The purpose of this study is to evaluate the performance of 

TD3 on relatively small datasets. Experiments using criteria such 

as expected returns and Sharpe Ratio indicate that DRL models 

outperform baseline models. Hyper-parameter tuning has a 

beneficial effect overall. 
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I.  INTRODUCTION  

We can address Portfolio optimization as a model that 
allocates a fixed number of resources between these risky assets 
to maximize the likelihood of returns [1]. This paper focuses on 
stock trading. The portfolio is an allocation of resources across 
owned stocks.  

There are several Machine Learning techniques for stock 
trading. One approach is utilizing forecasting techniques to 
predict the stock's performance and building a heuristic-based 
model that uses the prediction to make decisions. Another 
strategy is to develop a model that analyzes stock performance 
and recommends buy/sell/hold decisions accordingly. The first 
approach assumes the optimal strategy based on past 
information can work in the future. While this method can serve 
as a guideline for future investment, it fails to give us an 
accurate forecast of future performance since the assumption 
may not be valid. The second technique will be an ideal 
application of DRL, as the collective outcome of the actions is 
only established after each trading epoch through learning, 
which corresponds to the trial-and-error character of DRL [2-4]. 

 In the vanilla Deep Deterministic Policy Gradient (DDPG) 
approach [5], the agent optimizes its action policy by repeatedly 
attempting different actions to maximize the expected 
cumulative reward in the simulated environment. The agent in 

DDPG consists of two components: the actor, who determines 
its action based on its current state, and the critic, which 
evaluates the state and action pairings based on the estimated 
cumulative reward. However, the DDPG model suffers from 
overestimation (Q values of the critic network) from 
approximation errors of high dimensional functions in the 
neural network. Since actor-critic methods are bootstrapped [6], 
these errors accumulate during the training time. When these 
errors build up, the agent can fall into local optima or 
catastrophic forgetting. TD3 uses a pair of critic networks, 
delayed actor updates, and action noise regularization to 
address the issue above. This study aims to examine the 
performance of MPT and DRL models on a small dataset. 

II. METHODOLOGY 

A. Asset Pre-selection 

This study selects stocks with diversification to minimize 
the risk factor. There are six stocks from different sectors: 
technology, energy, and food; they are AAPL, CVX, NSRGY, 
MSFT, PEP, and XOM. Figure 1 shows the correlation among 
the six stocks using a heat map. 

 

Figure 1. Heat Map of Different Assets. 

B. Data Collection 

The trading data come from Yahoo! Finance Python API. 
The data follows the format of Open, High, Low, and Close 
(OHLC) for a given trading period. Figure 2. shows the "Adj. 
Close" history of the data. 



 

 

 

Figure 2. Adj. Close History of the Dataset. 

C. Modern Portfolio Theory (MPT) 

By changing the asset distributions, MPT seeks to optimize 
portfolio expected return under a specific level of risk or reduce 
the risk for a given expected return. Modeling a portfolio as a 
mixture of risky assets, MPT represents an asset's return as an 
elliptically distributed random variable, with risk as the 
standard deviation of return and a portfolio's return as the 
weighted sum of the returns of each asset. To harness the power 
of diversification, this study computes the mean-variance 
efficient frontier as a quadratic programming problem (or 
convex optimization problem), assuming that the constraints 
(quantifying risk with the asset return covariance matrix) are 
not too complicated. 

First, this study selects a one-parameter family of efficient 
allocations among all possible combinations of assets; then, it 
performs a one-dimensional search, looking for the best among 
the efficient allocations numerically, with the help of the Sharpe 
Ratio, defined as 

 Sharpe Ratio=
𝑅𝑝−𝑅𝑟𝑓

𝜎𝑝
.                (1) 

𝑅𝑝  is the expected portfolio return, 𝑅𝑟𝑓   is the risk-free 

return rate, and portfolio volatility (standard deviation). Sharpe 
ratio measures the portfolio returns, adjusted by risk. The 
maximum Sharpe Ratio allocation represents the best portfolio 
under the above measurement. 

PyPortfolioOpt [7] is an excellent open source tool to 
address the aforementioned convex optimization problem. This 
Python library contains numerous financial portfolio 
optimization techniques, including mean-variance optimization 
(MVO). MVO often results in many efficient assets getting 
negligible weights, which may not be ideal for diversification 
purposes. To get more non-negligible weights, the model in this 
paper uses a parameter 𝛾 to penalize small weights of objective 
functions. Then we compare the result from PyPortfolioOpt 
with the one from Monte Carlo Simulation, where there are 
different expected returns and expected volatility under various 
combinations of allocation weights. 

D. Portfolio Management Using Reinforcement Learning 

1) Reinforcement Learning Experiment Environment  

a) Noise Generation Function 

In Reinforcement Learning, the explore-exploit trade-off is 
fundamental. The model sometimes has to make bad choices to 
get optimal learning results. Actions could adopt some noises 
(typically uncorrelated mean-zero Gaussian noise) for more 
exploration during the training time. 

b) State  

A state at any time t is   

  𝑆𝑡 =

(

 

𝑐𝑡
0 𝑐𝑡

1 … 𝑐𝑡
𝑚

𝑐𝑡−1
0 𝑐𝑡
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𝑚

⋮ ⋮ … ⋮
𝑐𝑡−𝑑
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1 … 𝑐𝑡−𝑑
𝑚 )

  .                     (2) 

𝑐𝑖
𝑗
 is the close price for asset j at time i. d is the length of the 

state's window, which is the number of past time steps deemed 
relevant. The elements with superscripts 0 in the first column 
are hardcoded as one, representing cash data. This study denotes 
the z-normalized log return of asset j at the time i as 

𝑅𝑖
𝑗
= 𝑙𝑜𝑔(𝑐𝑖

𝑗
) − 𝑙𝑜𝑔(𝑐𝑖−1

𝑗
).              (3) 

c) Action 

The action in this problem is the weights of assets allocation 
in cash and m assets, with the sum of these weights as one.  

           𝐴𝑡 = 𝑤𝑡 = (𝑤𝑡
0, 𝑤𝑡

1, … , 𝑤𝑡
𝑚), ∑

𝑖=0

𝑚

𝑤𝑡
𝑖 = 1.          (4) 

d) Transaction Costs 

Due to the price movement, the portfolio weight vector 
changes when buying or selling an asset. This study uses a 
transaction remainder factor 𝜇𝑡 to measure the value the 
portfolio shrinks due to reallocation.  

                 𝜇𝑡 = 𝑐 ∑
𝑗=1

𝑚

|𝐴′𝑡
𝑗
− 𝐴𝑡

𝑗 |.                         (5) 

where 𝐴′ represents the new portfolio weightings and c is 
the transaction cost rate [8]. 

e) Reward 

The profit at time timestamp T is  

 𝑝𝑇 = ∏
𝑡=1

𝑇

𝑐𝑡 ⋅ 𝑤𝑡−1.                    (6) 

Adding transaction costs gives us 

𝑝𝑇 = ∏
𝑡=1

𝑇

(1 − 𝜇𝑡)𝑐𝑡 ⋅ 𝑤𝑡−1.                        (7) 

To avoid the sparsity of rewards, this study takes the 
logarithm of equation (7): 

 𝑙𝑜𝑔(𝑝𝑇) = ∑
𝑡=1

𝑇

𝑙𝑜𝑔(𝜇𝑡𝑐𝑡 ⋅ 𝑤𝑡−1).                               (8)         

Thus, we have 𝑙𝑜𝑔(𝜇𝑡𝑐𝑡 ⋅ 𝑤𝑡−1) reward for each timestamp. 

2) Model Architecture  

TD3 is the DRL model used for this study. Figure 3 depicts 
the overall structure of the model. In keeping with the 
characteristics of portfolio optimization, TD3 performs well 
with continuous action space, partial observability, and 
multidimensional data. TD3 addresses the overestimation bias 



 

 

in DDPG by employing a pair of critic networks that uses the 
smallest value of the two when forming targets, using delayed 
updates on the actor-network compared to the value network to 
achieve a more stable and efficient training, and adding clipped 
noise to the selected action when calculating the targets in order 
to reduce the variance of target values when updating the critic. 
TD3 employs a replay buffer for efficient learning using small 
batches that reduce network update correlation and prevent 
forgetting. The predictor is based on work by Jiang et al. The 
model extracts patterns from numerical stock price histories 
using a Long Short-Term Memory (LSTM) network [9]. 

 

Figure 3. TD3 Architecture. 

 

See Figure 4 and Table I for the information on actor and 
critic networks. 

 

Figure 4. Network Architecture. 

TABLE I. NETWORK DIMENSION. 

Network 
Dimension 

Input Layer Hidden Layer Output Layer 

Actor Network 𝑁 × (𝑊 + 𝐹) 𝑁 × 32 𝑁 

Critic Network 𝑁 × (𝑊 + 𝐹) × 1 𝑁 × 32 1 

III. EXPERIMENTS RESULTS AND DISCUSSION 

A. Experimental Setup 

The data for this study are collected from Yahoo Finance as 
described in Section II-B. See Table II for the statistics of the 
dataset for the DRL model. 

 

TABLE II. DATASET STATISTICS. 

Training Data Testing Data 

Date Range Steps Date Range Steps 

2012/03/28 to 2020/09/29 2140 2020/09/29 to 2022/03/03 358 

 

The date range for the MPT model is the same as the DRL 
model. 

The training and testing split has a ratio of six to one. The 
model is trained across 400 epochs, each containing 1000 steps. 
Set a random starting point for each epoch's beginning. 
Uniformly sample a mini-batch of size 64 from the replay buffer. 
This study chooses these tunable hyper-parameters per past 
research to harness hardware resources at the computer 
architecture level [10]. 

The MPT models serve as baseline models. Then test DDPG 
and TD3 models with window-size 3, 7, and 14 (semi-weekly, 
weekly, and bi-weekly) under the same conditions. 

B. Results 

1) MPT 
Figure 4, Figure 5, Table III, and Table IV present the 

corresponding experimental results.  

  

Figure 4. Monte Carlo Simulation. 

TABLE III. MONTE CARLO SIMULATION RESULTS. 

Performance Weights 

Returns Volatility 
Sharpe 

Ratio 
APPL CVX MSFT NSRGY PEP XOM 

44.59% 17.40% 256.25% 7.45% 22.5% 24.39% 7.68% 12.46% 25.45% 

  

 

Figure 5. Efficient Frontier using PyPortfolioOpt. 



 

 

TABLE IV. PYPORTFOLIOOPT RESULTS. 

Performance Weights 

Returns Volatility 
Sharpe 

Ratio 
APPL CVX MSFT NSRGY PEP XOM 

68.32% 22.06% 247% 11.61% 31.19% 11.83% 2.70% 5.62% 37.07% 

2) DRL 

Figure 6 and Figure 7 show the training and testing results for 
the DRL model, respectively. 

     

Figure 6. Training Results. 

 

Figure 7. Testing Results. 

Because DRL operates in continuous action space,  using a 
pie chart (Figure 8) that illustrates the average allocation 
weights of assets in the dataset is a reasonable way to get insight 
into the allocation strategy. 

  

Figure 8. Average Allocation Weights. 

3) Discussion 

TD3 outperforms DDPG with window size three. Window 
size seven did not yield better results than window size three. 
However, the best model is DDPG with a window size of 14, 
which achieves 71.3% of portfolio value gain. Table III, IV, and 
Figure 8 show that the DRL model picked a different allocation 
weight than the MPT model. Note that the MPT model gets the 
optimal weights by looking over all the data, while the DRL 
model continuously changes the allocation weights through 
learning. Moreover, the MPT model has no transaction cost 
since the allocation is static for the whole time. 

IV. CONCLUSION AND FUTURE WORK 

This study utilized MPT and DRL models to optimize a 
portfolio. DRL models use DDPG and TD3 with varying 
observation window sizes. The DRL model's performance 
stands out among our models. There is a non-linear relationship 
between window size and performance. Note that this study 
uses a small set of assets to train the models, which can result 
in little training data. 

In contrast to datasets such as SP500, the hyper-parameter 
adjustment for these datasets should have a finer granularity. 
One can also train a model using a much larger dataset and 
deploy the model onto a small dataset. Cloud computing 
services like Amazon Web Services (AWS) can alleviate the 
extended training time. In addition, the training and testing 
dataset split during the COVID-19 pandemic (March 2020). 
The unknown is the effect of COVID-19. A model that can 
address this unknown deviant phenomenon is worthy of further 
research. Additional research can investigate other opponent 
alternatives inside the architecture for the DRL model. As agent 
frameworks, Advantage Actor-Critical and Proximal Policy 
Optimization may be employed. This study employs a reward 
function that emphasizes the capital growth of a portfolio; a 
potential improved reward function can incorporate the Mean-
Variance Theory for more volatility awareness. 
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