

Portfolio Optimization Based on Deep Reinforcement

Learning

Guoxin Sun1, *
1Computer Science and Engineering

University of California

San Diego, USA

*Corresponding author: g3sun@ucsd.edu

Abstract— Portfolio Optimization (PO) is a financial engineering

technique that rebalances resources across multiple risky assets at

a particular moment to optimize returns and minimize risks. This

study reveals two methods (static and dynamic) for PO. The static

method utilized Maximum Sharpe Ratio to determine allocation

weights that optimize prior profits. The dynamic approach

employs Deep Reinforcement Learning (DRL) to build a model

that analyzes stock movement and recommends immediate trading

actions (buy/sell/hold). The dynamic method utilizes Twin Delayed

Deep Deterministic Policy Gradient (TD3) because it performs

well in continuous action spaces without producing excessive

biases. The purpose of this study is to evaluate the performance of

TD3 on relatively small datasets. Experiments using criteria such

as expected returns and Sharpe Ratio indicate that DRL models

outperform baseline models. Hyper-parameter tuning has a

beneficial effect overall.

Keywords—Portfolio optimization; Reinforcement learning;

Deep deterministic policy gradient

I. INTRODUCTION

We can address Portfolio optimization as a model that
allocates a fixed number of resources between these risky assets
to maximize the likelihood of returns [1]. This paper focuses on
stock trading. The portfolio is an allocation of resources across
owned stocks.

There are several Machine Learning techniques for stock
trading. One approach is utilizing forecasting techniques to
predict the stock's performance and building a heuristic-based
model that uses the prediction to make decisions. Another
strategy is to develop a model that analyzes stock performance
and recommends buy/sell/hold decisions accordingly. The first
approach assumes the optimal strategy based on past
information can work in the future. While this method can serve
as a guideline for future investment, it fails to give us an
accurate forecast of future performance since the assumption
may not be valid. The second technique will be an ideal
application of DRL, as the collective outcome of the actions is
only established after each trading epoch through learning,
which corresponds to the trial-and-error character of DRL [2-4].

 In the vanilla Deep Deterministic Policy Gradient (DDPG)
approach [5], the agent optimizes its action policy by repeatedly
attempting different actions to maximize the expected
cumulative reward in the simulated environment. The agent in

DDPG consists of two components: the actor, who determines
its action based on its current state, and the critic, which
evaluates the state and action pairings based on the estimated
cumulative reward. However, the DDPG model suffers from
overestimation (Q values of the critic network) from
approximation errors of high dimensional functions in the
neural network. Since actor-critic methods are bootstrapped [6],
these errors accumulate during the training time. When these
errors build up, the agent can fall into local optima or
catastrophic forgetting. TD3 uses a pair of critic networks,
delayed actor updates, and action noise regularization to
address the issue above. This study aims to examine the
performance of MPT and DRL models on a small dataset.

II. METHODOLOGY

A. Asset Pre-selection

This study selects stocks with diversification to minimize
the risk factor. There are six stocks from different sectors:
technology, energy, and food; they are AAPL, CVX, NSRGY,
MSFT, PEP, and XOM. Figure 1 shows the correlation among
the six stocks using a heat map.

Figure 1. Heat Map of Different Assets.

B. Data Collection

The trading data come from Yahoo! Finance Python API.
The data follows the format of Open, High, Low, and Close
(OHLC) for a given trading period. Figure 2. shows the "Adj.
Close" history of the data.

Figure 2. Adj. Close History of the Dataset.

C. Modern Portfolio Theory (MPT)

By changing the asset distributions, MPT seeks to optimize
portfolio expected return under a specific level of risk or reduce
the risk for a given expected return. Modeling a portfolio as a
mixture of risky assets, MPT represents an asset's return as an
elliptically distributed random variable, with risk as the
standard deviation of return and a portfolio's return as the
weighted sum of the returns of each asset. To harness the power
of diversification, this study computes the mean-variance
efficient frontier as a quadratic programming problem (or
convex optimization problem), assuming that the constraints
(quantifying risk with the asset return covariance matrix) are
not too complicated.

First, this study selects a one-parameter family of efficient
allocations among all possible combinations of assets; then, it
performs a one-dimensional search, looking for the best among
the efficient allocations numerically, with the help of the Sharpe
Ratio, defined as

 Sharpe Ratio=
𝑅𝑝−𝑅𝑟𝑓

𝜎𝑝
. (1)

𝑅𝑝 is the expected portfolio return, 𝑅𝑟𝑓 is the risk-free

return rate, and portfolio volatility (standard deviation). Sharpe
ratio measures the portfolio returns, adjusted by risk. The
maximum Sharpe Ratio allocation represents the best portfolio
under the above measurement.

PyPortfolioOpt [7] is an excellent open source tool to
address the aforementioned convex optimization problem. This
Python library contains numerous financial portfolio
optimization techniques, including mean-variance optimization
(MVO). MVO often results in many efficient assets getting
negligible weights, which may not be ideal for diversification
purposes. To get more non-negligible weights, the model in this
paper uses a parameter 𝛾 to penalize small weights of objective
functions. Then we compare the result from PyPortfolioOpt
with the one from Monte Carlo Simulation, where there are
different expected returns and expected volatility under various
combinations of allocation weights.

D. Portfolio Management Using Reinforcement Learning

1) Reinforcement Learning Experiment Environment

a) Noise Generation Function

In Reinforcement Learning, the explore-exploit trade-off is
fundamental. The model sometimes has to make bad choices to
get optimal learning results. Actions could adopt some noises
(typically uncorrelated mean-zero Gaussian noise) for more
exploration during the training time.

b) State

A state at any time t is

 𝑆𝑡 =

(

𝑐𝑡
0 𝑐𝑡

1 … 𝑐𝑡
𝑚

𝑐𝑡−1
0 𝑐𝑡

1 … 𝑐𝑡
𝑚

⋮ ⋮ … ⋮
𝑐𝑡−𝑑
0 𝑐𝑡−𝑑

1 … 𝑐𝑡−𝑑
𝑚)

 . (2)

𝑐𝑖
𝑗
 is the close price for asset j at time i. d is the length of the

state's window, which is the number of past time steps deemed
relevant. The elements with superscripts 0 in the first column
are hardcoded as one, representing cash data. This study denotes
the z-normalized log return of asset j at the time i as

𝑅𝑖
𝑗
= 𝑙𝑜𝑔(𝑐𝑖

𝑗
) − 𝑙𝑜𝑔(𝑐𝑖−1

𝑗
). (3)

c) Action

The action in this problem is the weights of assets allocation
in cash and m assets, with the sum of these weights as one.

 𝐴𝑡 = 𝑤𝑡 = (𝑤𝑡
0, 𝑤𝑡

1, … , 𝑤𝑡
𝑚), ∑

𝑖=0

𝑚

𝑤𝑡
𝑖 = 1. (4)

d) Transaction Costs

Due to the price movement, the portfolio weight vector
changes when buying or selling an asset. This study uses a
transaction remainder factor 𝜇𝑡 to measure the value the
portfolio shrinks due to reallocation.

 𝜇𝑡 = 𝑐 ∑
𝑗=1

𝑚

|𝐴′𝑡
𝑗
− 𝐴𝑡

𝑗 |. (5)

where 𝐴′ represents the new portfolio weightings and c is
the transaction cost rate [8].

e) Reward

The profit at time timestamp T is

 𝑝𝑇 = ∏
𝑡=1

𝑇

𝑐𝑡 ⋅ 𝑤𝑡−1. (6)

Adding transaction costs gives us

𝑝𝑇 = ∏
𝑡=1

𝑇

(1 − 𝜇𝑡)𝑐𝑡 ⋅ 𝑤𝑡−1. (7)

To avoid the sparsity of rewards, this study takes the
logarithm of equation (7):

 𝑙𝑜𝑔(𝑝𝑇) = ∑
𝑡=1

𝑇

𝑙𝑜𝑔(𝜇𝑡𝑐𝑡 ⋅ 𝑤𝑡−1). (8)

Thus, we have 𝑙𝑜𝑔(𝜇𝑡𝑐𝑡 ⋅ 𝑤𝑡−1) reward for each timestamp.

2) Model Architecture

TD3 is the DRL model used for this study. Figure 3 depicts
the overall structure of the model. In keeping with the
characteristics of portfolio optimization, TD3 performs well
with continuous action space, partial observability, and
multidimensional data. TD3 addresses the overestimation bias

in DDPG by employing a pair of critic networks that uses the
smallest value of the two when forming targets, using delayed
updates on the actor-network compared to the value network to
achieve a more stable and efficient training, and adding clipped
noise to the selected action when calculating the targets in order
to reduce the variance of target values when updating the critic.
TD3 employs a replay buffer for efficient learning using small
batches that reduce network update correlation and prevent
forgetting. The predictor is based on work by Jiang et al. The
model extracts patterns from numerical stock price histories
using a Long Short-Term Memory (LSTM) network [9].

Figure 3. TD3 Architecture.

See Figure 4 and Table I for the information on actor and
critic networks.

Figure 4. Network Architecture.

TABLE I. NETWORK DIMENSION.

Network
Dimension

Input Layer Hidden Layer Output Layer

Actor Network 𝑁 × (𝑊 + 𝐹) 𝑁 × 32 𝑁

Critic Network 𝑁 × (𝑊 + 𝐹) × 1 𝑁 × 32 1

III. EXPERIMENTS RESULTS AND DISCUSSION

A. Experimental Setup

The data for this study are collected from Yahoo Finance as
described in Section II-B. See Table II for the statistics of the
dataset for the DRL model.

TABLE II. DATASET STATISTICS.

Training Data Testing Data

Date Range Steps Date Range Steps

2012/03/28 to 2020/09/29 2140 2020/09/29 to 2022/03/03 358

The date range for the MPT model is the same as the DRL
model.

The training and testing split has a ratio of six to one. The
model is trained across 400 epochs, each containing 1000 steps.
Set a random starting point for each epoch's beginning.
Uniformly sample a mini-batch of size 64 from the replay buffer.
This study chooses these tunable hyper-parameters per past
research to harness hardware resources at the computer
architecture level [10].

The MPT models serve as baseline models. Then test DDPG
and TD3 models with window-size 3, 7, and 14 (semi-weekly,
weekly, and bi-weekly) under the same conditions.

B. Results

1) MPT
Figure 4, Figure 5, Table III, and Table IV present the

corresponding experimental results.

Figure 4. Monte Carlo Simulation.

TABLE III. MONTE CARLO SIMULATION RESULTS.

Performance Weights

Returns Volatility
Sharpe

Ratio
APPL CVX MSFT NSRGY PEP XOM

44.59% 17.40% 256.25% 7.45% 22.5% 24.39% 7.68% 12.46% 25.45%

Figure 5. Efficient Frontier using PyPortfolioOpt.

TABLE IV. PYPORTFOLIOOPT RESULTS.

Performance Weights

Returns Volatility
Sharpe

Ratio
APPL CVX MSFT NSRGY PEP XOM

68.32% 22.06% 247% 11.61% 31.19% 11.83% 2.70% 5.62% 37.07%

2) DRL

Figure 6 and Figure 7 show the training and testing results for
the DRL model, respectively.

Figure 6. Training Results.

Figure 7. Testing Results.

Because DRL operates in continuous action space, using a
pie chart (Figure 8) that illustrates the average allocation
weights of assets in the dataset is a reasonable way to get insight
into the allocation strategy.

Figure 8. Average Allocation Weights.

3) Discussion

TD3 outperforms DDPG with window size three. Window
size seven did not yield better results than window size three.
However, the best model is DDPG with a window size of 14,
which achieves 71.3% of portfolio value gain. Table III, IV, and
Figure 8 show that the DRL model picked a different allocation
weight than the MPT model. Note that the MPT model gets the
optimal weights by looking over all the data, while the DRL
model continuously changes the allocation weights through
learning. Moreover, the MPT model has no transaction cost
since the allocation is static for the whole time.

IV. CONCLUSION AND FUTURE WORK

This study utilized MPT and DRL models to optimize a
portfolio. DRL models use DDPG and TD3 with varying
observation window sizes. The DRL model's performance
stands out among our models. There is a non-linear relationship
between window size and performance. Note that this study
uses a small set of assets to train the models, which can result
in little training data.

In contrast to datasets such as SP500, the hyper-parameter
adjustment for these datasets should have a finer granularity.
One can also train a model using a much larger dataset and
deploy the model onto a small dataset. Cloud computing
services like Amazon Web Services (AWS) can alleviate the
extended training time. In addition, the training and testing
dataset split during the COVID-19 pandemic (March 2020).
The unknown is the effect of COVID-19. A model that can
address this unknown deviant phenomenon is worthy of further
research. Additional research can investigate other opponent
alternatives inside the architecture for the DRL model. As agent
frameworks, Advantage Actor-Critical and Proximal Policy
Optimization may be employed. This study employs a reward
function that emphasizes the capital growth of a portfolio; a
potential improved reward function can incorporate the Mean-
Variance Theory for more volatility awareness.

REFERENCES

[1] H. Markowitz, "Portfolio Selection," The Journal of Finance, vol. 7, no.
1, pp. 77-91, 1952.

[2] Z. Jiang et al., "A Deep Reinforcement Learning Framework for the
Financial Portfolio Management Problem," 2017.

[3] J. Petterson, and A. Gibson, "Deep Learning-A Practitioner's Practice,"
2017, ISBN 9781491914250.

[4] T. L. Meng and M. Khushi, "Reinforcement Learning in Financial
Markets," Data, vol. 4, p.110, 2019.

[5] S. Hegde, V. Kumar, and A. Singh, "Risk aware portfolio construction
using deep deterministic policy gradients," 2018.

[6] S. Fujimoto, H. Van, and D. Meger, "Addressing Function Approximation
Error in Actor-Critic Methods," 35th International Conference on
Machine Learning, ICML 2018, pp. 257-2601, 2018.

[7] R. Martin, "PyPortfolioOpt: portfolio optimization in Python," Journal of
Open-Source Software, vol. 6, 3066, 2021.

[8] Z. Liang, H. Chen, J. Zhu, K. Jiang, and Y. Li, "Adversarial Deep
Reinforcement Learning in Portfolio Management," 2018.

[9] S. Hochreiter, and S. Jürgen, "Long Short-Term Memory," Neural
Computation, 9, 1997, pp. 1735-1780.

	I. Introduction
	II. Methodology
	A. Asset Pre-selection
	B. Data Collection
	C. Modern Portfolio Theory (MPT)
	D. Portfolio Management Using Reinforcement Learning
	1) Reinforcement Learning Experiment Environment
	a) Noise Generation Function
	b) State
	c) Action
	d) Transaction Costs
	e) Reward

	2) Model Architecture

	III. Experiments results and discussion
	A. Experimental Setup
	B. Results
	1) MPT
	2) DRL
	3) Discussion

	IV. conclusion and future work
	References

